
TUGlab Users Guide

Miguel Ángel Mirás Calvo1 Estela Sánchez Rodrı́guez2

Universidad de Vigo

April, 2008

1Departamento de Matemáticas. Facultad de Ciencias Económicas y Empresariales. Rúa Leonardo da
Vinci,s/n. 36310 Vigo. Spain. e-mail: mmiras@uvigo.es

2Departamento de Estadı́stica e Investigación Operativa. Facultad de Ciencias Económicas y Empresar-
iales. Rúa Leonardo da Vinci,s/n. 36310 Vigo. Spain. e-mail: esanchez@uvigo.es

Contents

Contents 4

Introduction 5

1 The main commands 9
1.1 ADDITIVEGAME . 10
1.2 ADMISSIBLEGAME . 11
1.3 BALANCEDGAME . 12
1.4 BELONGTOCORE . 13
1.5 CONVEXGAME . 14
1.6 CORECENTER . 15
1.7 CORECOVERSET . 16
1.8 CORECOVERVERTICES . 17
1.9 CORESET . 18
1.10 COREVERTICES . 19
1.11 DUALGAME . 21
1.12 ESSENTIALGAME . 22
1.13 EXACTGAME . 23
1.14 EXCESSES . 24
1.15 FACESGAMES . 25
1.16 HARSANYIDIVIDENDS . 26
1.17 HARSANYISET . 27
1.18 IMPUTATIONSET . 28
1.19 IMPUTATIONVERTICES . 29
1.20 MLEXTENSION . 30
1.21 MONOTONICGAME . 31
1.22 NORMALIZEDGAME . 32
1.23 NUCLEOLUS . 33
1.24 SHAPLEY . 35
1.25 SUPERADDITIVEGAME . 36
1.26 TAUVALUE . 37
1.27 TOTALBALANCEDGAME . 38
1.28 UTOPIAPAYOFFS . 39

4 Index

1.29 WEBERSET . 40
1.30 WEBERVERTICES . 41
1.31 ZEROMONOTONICGAME . 42

2 The auxiliary commands 43
2.1 CCIMPUTATION3 . 44
2.2 CENTROIDGAME3 . 45
2.3 CHECKBOUNDS . 46
2.4 CHECKSEGMENT . 47
2.5 CONVEXHULLEXTREMES . 48
2.6 CORECOVERINFO . 49
2.7 COREINFO . 52
2.8 EFFICIENCY . 54
2.9 FACETSORDER . 55
2.10 GRAMSCHMIDT . 57
2.11 HARSANYISETINFO . 58
2.12 HERONFORMULA . 59
2.13 HYPERPLANE . 60
2.14 IMPUTATION3PLOT . 61
2.15 IMPUTATIONSET3WHITE . 62
2.16 LINPROG . 63
2.17 LIPSOL . 64
2.18 NUCLEOLUSAUX . 65
2.19 NUCLEOLUSIMPLEX . 68
2.20 NUCLEOLUSINFO . 70
2.21 POLIGONORDER . 74
2.22 PRECISION . 75
2.23 REPEATEDROWS . 76
2.24 WEBER4AUX . 77
2.25 WEBERINFO . 80
2.26 WEBERINFOEXTRA . 82
2.27 WEBERVERTICESEXTRA . 85

Bibliography 91

Introduction

The package TUGlab (Transferable Utility Games laboratory) is a Matlab program that
could serve as a helpful complement to the books and other materials used in introductory
courses on cooperative game theory. Its main goal is to emphasize the geometrical aspects
of cooperative game theory. TUGlab offers to both the instructor and the student a tool to
compute and visualize basic concepts for any given 3 or 4 persons TU games. It allows
the user to experiment at will with games without worrying about the mathematical com-
plexity of the computations. That is the power of this platform: its direct and flexible way
of going to the heart of the concepts overcoming the mathematical complexity.

The TUGlab platform works on any implementation of the later releases of the Matlab
product: Matlab 6 and Matlab 7 on Unix, PC or Macintosh. It is a collection of 60 files
including:

1. The main scripts (31 files) defining the procedures concerning game theory con-
cepts.

2. Auxiliary scripts (27 files) necessary for the computations but not directly related
to game theory.

3. Data files (2 files with extension .mat).

Both the main scripts and the auxiliary scripts can be run directly from the Matlab Com-
mand Window.

The main scripts are:

1. additivegame Checks if a TU game is additive.

2. admissiblegame Checks if a TU game is compromise admissible.

3. balancedgame Checks if a TU game is balanced.

4. belongtocore Checks if a given point belongs to the core of a TU game.

5. convexgame Checks if a TU game is convex.

6. corecenter Computes the corecenter of a TU game.

7. corecoverset Draws the core-cover of a 4-person compromise admissible TU game.

6 Introduction

8. corecoververtices Computes the vertices of the core-cover of a 4-person compro-
mise admissible TU game.

9. coreset Draws the core of a balanced TU game.

10. corevertices Computes the vertices of the core of a TU game.

11. dualgame Returns the dual game of a TU game.

12. essentialgame Checks if a TU game is essential.

13. exactgame Checks if a TU game is exact.

14. excesses Computes the excesses of an allocation.

15. facesgames Returns the faces games of a TU game.

16. harsanyidividends Computes the Harsanyi dividends of a TU game.

17. harsanyiset Draws the Harsanyi set of a TU game.

18. imputationset Draws the imputation set of an essential non-degenerate TU game.

19. imputationvertices Computes the vertices of the imputation set of a TU game.

20. MLExtension Returns the multi-linear extension of a TU game.

21. monotonicgame Checks if a TU game is monotonic.

22. normalizedgame Provides both the 0 and 0-1 normalizations of a TU game.

23. nucleolus Returns the nucleolus of a TU game.

24. Shapley Computes the Shapley value and the marginal worth vectors of a TU game.

25. superadditivegame Checks if a TU game is superadditive.

26. tauvalue Computes the tau-value of a TU game.

27. totalbalancedgame Checks if a TU game is totally balanced.

28. utopiapayoffs Returns the utopia payoffs of a TU game.

29. weberset Draws the Weber set of an essential non-degenerate TU game.

30. webervertices Computes the vertices of the Weber set.

31. zeromonotonicgame Checks if a TU game is 0-monotonic.

Introduction 7

The characteristic function of the game must be introduced as a vector A=[v(1) v(2)
v(3) v(12) v(13) v(23) v(123)], for 3 persons games, or A=[v(1) v(2) v(3) v(4) v(12) v(13)
v(14) v(23) v(24) v(34) v(123) v(124) v(134) v(234) v(1234)], for 4 persons games. So,
for example, the next commands

A=[0 0 0 100 200 300 400];[control,info]=convexgame(A)

produce the outcome

control = 0
info = v{123}-v{23}<v{13}-v{3}

which tells us that the game given by A is not convex because the inequality v(123) −
v(23) < v(13)− v(3) holds.

To draw, for example, the core of a game A it is optimal to plot the imputation set first
and then superimpose the core. The following commands

A=[0,0,0,0,10,40,30,60,10,20,90,90,120,130,160];
clf
imputationset(A)
hold on,axis(axis)
coreset(A)

produce the picture

The 27 auxiliary scripts are:

CCimputation3.m centroidgame3.m checkbounds.m
checksegment.m convexhullextremes.m corecoverinfo.m
coreinfo.m efficiency.m facetsorder.m
gramschmidt.m harsanyisetinfo.m heronformula.m
hyperplane.m imputation3plot.m imputationset3white.m
linprog.m lipsol.m nucleolusaux.m
nucleolusimplex.m nucleolusinfo.m poligonorder.m
precision.m repeatedrows.m weber4aux.m
weberinfo.m weberinfoextra.m weberverticesextra.m

8 Introduction

Finally, there are two data files: intersecciones.mat and interseccionesCC.mat.
Please, report any bugs or suggestions about TUGlab to:

mmiras@uvigo.es or esanchez@uvigo.es

All comments would be welcome.
We wish to acknowledge the support of the

Santiago Game Theory Group (SaGaTh)

The last updated version of TUGlab can be donwloaded from the

TUGlab Home Page

http://eio.usc.es/pub/io/xogos/
http://webs.uvigo.es/matematicas/campus_vigo/profesores/mmiras/TUGlabWeb/TUGlab.html

Chapter 1

The main commands

Let us briefly described the 30 main commands defined in the TUGlab platform. For each
command we include:

1. The syntax.

2. The Matlab help information.

3. The input variables.

4. The output variables.

5. Some comments regarding the TU game concepts associated with the command and
any information that could be of interest to understand how the command operates.

6. An example.

7. A list of related TUGlab commands.

Throughout this manual we use the following notation: A cooperative game with
transferable utility, or TU-game, is described by a pair (N, v) where

1. N = {1, . . . , n} is the set of agents.

2. v : 2N → R is the characteristic function assigning to each coalition S ⊂ N a value
v(S) representing the benefits from cooperation.

We will always take v(∅) = 0. The coalition N is called the grand coalition.
In particular, for 3 and 4 players games, there are 7 and 15 nonempty coalitions re-

spectively, so the corresponding characteristic functions can be identified with vectors in
R7 and R15.

10 Chapter 1. The main commands

1.1 ADDITIVEGAME
Syntax: [S,info]=additivegame(A)

ADDITIVEGAME Checks if a TU game is additive.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

S=additivegame(A) If the TU game given by vector A is additive S is 1, otherwise S
is 0.

[S,info]=additivegame(A) If the game is not additive, info provides an instance where
additivity breaks down.
COMMENTS

A game is additive if v(S ∪ T) = v(S) + v(T), for all disjoint coalitions S, T ⊂ N .
EXAMPLE

>> A=[0 0 0 2 2 2 4];
>> [aditivo,info]=additivegame(A)
aditivo = 0
info =
v13 <> v1+v3

See also SUPERADDITIVEGAME, CONVEXGAME.

1.2 ADMISSIBLEGAME 11

1.2 ADMISSIBLEGAME
Syntax: [CA,info]=admissiblegame(A)

ADMISSIBLEGAME Checks if a TU game is compromise admissible.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v234 v1234].
OUTPUT

CA=admissiblegame(A) If the TU game given by vector A is compromise admissible,
that is, the core-cover is not empty, then CA is 1, otherwise CA is 0.

[CA,info]=admissiblegame(A) If the game is not compromise admissible then the
variable info provides an instance where this property fails.
COMMENTS

A game is said to be compromise admissible if the core-cover is a nonempty set.
EXAMPLES

>> A=[0 0 0 2 2 2 4];CA=admissiblegame(A)
CA = 1
>> A=[0 0 0 0 1 2 1 1 1 1 4 3 2 1 -2];
>> [CA,info]=admissiblegame(A)
CA =
0
info =
m(1)>M(1)

See also UTOPIAPAYOFFS, CORECOVERSET, CORECOVERVERTICES, CORE-
COVERINFO.

12 Chapter 1. The main commands

1.3 BALANCEDGAME
Syntax: [B,info]=balancedgame(A)

BALANCEDGAME Checks if a TU game is balanced.
INPUT

For 2 players the characteristic function must be introduced with vector A=[v1 v2
v12]. For 3 players the characteristic function must be introduced with vector A=[v1 v2
v3 v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

B=balancedgame(A) If the TU game given by vector A is balanced B is 1, otherwise
B is 0. Balancedness is determined by the Bondareva-Shapley conditions.

[B,info]=balancedgame(A) If the game is not balanced, i.e., the core is empty, then
info provides an instance of a balanced family that does not satisfy the Bondareva-Shapley
conditions.
COMMENTS

A game is balanced if the core is a nonempty set. The Bondareva-Shapley conditions
are a characterization of balanced games in terms of balanced families of coalitions.
EXAMPLE

>> A=[0 0 0 0 1 0 0 0 0 3 3 3 3 3 4];
>> [equilibrado,info]=balancedgame(A)
equilibrado =
0
info =
v{1234}<1/2*(v{34}+v{123}+v{124})

See also TOTALBALANCEDGAME, CORESET, COREVERTICES, COREINFO,
BELONGTOCORE.

1.4 BELONGTOCORE 13

1.4 BELONGTOCORE
Syntax: [B,info]=belongtocore(A,v)

BELONGTOCORE Checks if a point belongs to the core of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2
v3 v12 v13 v23 v123]. Vector v should be a 1 × 2 vector (the 3rd component of v is
computed with the command EFFICIENCY). For 4 players the characteristic function
must be introduced with vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124
v134 v234 v1234]. Vector v should be a 1 × 3 vector (the 4th component of v is is
computed with the command EFFICIENCY).
OUTPUT

B=belongtocore(A,v) If point v belongs to the core of the TU game defined by vector
A, B is 1, otherwise B is 0.

[B,info]=belongtocore(A,v) If v does not belong to the core, the variable info gives
one restriction that defines the core that v does not satisfy.
COMMENTS

The core of a game is the set of those imputations x ∈ Rn, x1 + ...+xn = v(N), such
that x(S) ≥ v(S) for all coalition S of N , where x(S) =

∑
i∈S xi. A vector x belongs to

the core if no coalition S has an incentive to split off if x is the proposed reward allocation
for N , because the total amount x(S) allocated to S is not smaller than the amount v(S)
which they can obtain by forming their own coalition.
EXAMPLE

>> A=[0 0 0 2 1 1 6];punto=[0 1];
>> [estable,info]=belongtocore(A,punto)
estable =
0
info =
x+y<v{12}

See also CORESET, COREVERTICES, COREINFO, EFFICIENCY.

14 Chapter 1. The main commands

1.5 CONVEXGAME
Syntax: [C,info]=convexgame(A)

CONVEXGAME Checks if a TU game is convex.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

C=convexgame(A) If the TU game given by vector A is convex C is 1, otherwise C is
0.

[C,info]=convexgame(A) If the game is not convex then the variable info provides an
instance where convexity fails.
COMMENTS

A game is convex if v(S ∪T) + v(S ∩T) ≥ v(S) + v(T), for all coalitions S, T ⊂ N .
EXAMPLE

>> A=[0 0 0 0 3 4 4];[convexo,info]=convexgame(A)
convexo =
0
info =
v{123}-v{23}<v{13}-v{3}

See also SUPERADDITIVEGAME, ADDITIVEGAME.

1.6 CORECENTER 15

1.6 CORECENTER
Syntax: centroid=corecenter(A)

CORECENTER The corecenter of a TU balanced game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

centroid=corecenter(A) Computes the corecenter of a TU game given by vector A.
The corecenter is defined as the centroid (center of gravity) of the core, so it can only be
computed if the game is balanced.
COMMENTS

The corecenter is the expectation of the uniform distribution over the core of the game,
i.e., µ(v) = E(U), being U the uniform distribution over the core C(v).
EXAMPLE

>> A=[0 0 0 1 5 5 10];CC=corecenter(A)
CC =

2.5442 2.5442 4.9116

See also CENTROIDGAME3, HERONFORMULA, SHAPLEY, NUCLEOLUS,
TAUVALUE, BALANCEDGAME.

16 Chapter 1. The main commands

1.7 CORECOVERSET
Syntax: corecoverset(A)

CORECOVERSET Draws the core-cover of a 4-person compromise admissible TU game.
INPUT

For 4 players the characteristic function must be introduced with vector A=[v1 v2 v3
v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

It displays the core-cover of the 4-person game defined by A. The core-cover will be
depicted in yellow. If the game is not compromise admissible then it displays a warning:
the core-cover is empty.
COMMENTS

The core-cover consists of all the imputations which are between m(v) and M(v), the
minimum rights vector and the utopia payoff vector, in the usual partial order of Rn. For a
3-person game, the core-cover coincides with the core, so CORECOVERSET only works
for 4-person games.
EXAMPLE

>> A=[0 0 0 0 1 2 1 1 1 1 4 3 2 1 7];
>> imputationset(A),hold on,axis(axis)
>> corecoverset(A)

AD=1

See also CORECOVERVERTICES, CORECOVERINFO, ADMISSIBLEGAME,
UTOPIAPAYOFFS.

1.8 CORECOVERVERTICES 17

1.8 CORECOVERVERTICES
Syntax: ccpoints=corecoververtices(A)

CORECOVERVERTICES Computes the vertices of the core-cover of a TU game.
INPUT

For 4 players the characteristic function must be introduced with vector A=[v1 v2 v3
v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

ccpoints=corecoververtices(A) If A is a compromise admissible game, the core cover
is the convex hull of the rows of ccpoints; otherwise ccpoints is empty (ccpoints = []).
COMMENTS

The core-cover consists of all the imputations which are between m(v) and M(v), the
minimum rights vector and the utopia payoff vector, in the usual partial order of Rn. For
a 3-person game, the core-cover coincides with the core.
EXAMPLE

>> A=[0 0 0 0 1 2 1 1 1 1 4 3 2 1 7];
>> vertices=corecoververtices(A)
vertices =

0 0 4 3
0 5 0 2
0 5 2 0
0 4 0 3
0 3 4 0
6 0 0 1
6 0 1 0
6 1 0 0
4 0 0 3
3 0 4 0
2 5 0 0

See also CORECOVERSET, CORECOVERINFO, ADMISSIBLEGAME,
UTOPIAPAYOFFS, REPEATEDROWS.

18 Chapter 1. The main commands

1.9 CORESET
Syntax: coreset(A)

CORESET Draws the core of a balanced TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

It displays the core of the game defined by A.
COMMENTS

The core consists of all the stable imputations, that is,

C(v) = {x ∈ I(v) : x(S) =
∑
i∈S

xi ≥ v(S),∀S ⊂ N}.

The core allocations provide the agents with an incentive to maintain the grand coalition.
The core can be empty.
EXAMPLE

>> A=[0 0 0 0 1 2 1 1 1 1 4 3 2 1 7];
>> imputationset(A),hold on,axis(axis)
>> coreset(A)

See also COREVERTICES, COREINFO, BALANCEDGAME,
TOTALBALANCEDGAME, BELONGTOCORE, FACESGAMES.

1.10 COREVERTICES 19

1.10 COREVERTICES
Syntax: [corepoints,CW]=corevertices(A)

COREVERTICES Computes the vertices of the core of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

corepoints = corevertices(A) If game A is balanced, the core is the convex hull of the
rows of B; otherwise corepoints is empty

[corepoints,CW] = corevertices(A) CW are the core vertices that belong to the Weber
set.
COMMENTS

The core consists of all the stable imputations, that is, the set of all x = (x1, . . . , xn) ∈
Rn such that x1 + · · ·+ xn = v(N) and x(S) ≥ v(S), S ⊂ N .
EXAMPLE

>> A=[0 0 0 0 1 2 1 1 1 1 4 3 2 1 7];
>> [corepoints, CW]=corevertices(A)

corepoints =

0 1.0000 3.0000 3.0000
0 1.0000 4.0000 2.0000
0 2.0000 2.0000 3.0000
0 2.0000 4.0000 1.0000

1.0000 0 3.0000 3.0000
1.0000 0 4.0000 2.0000
3.0000 0 1.0000 3.0000
2.0000 0 4.0000 1.0000
2.0000 2.0000 0 3.0000
3.0000 1.0000 0 3.0000
1.0000 2.0000 4.0000 0
1.0000 5.0000 1.0000 0
2.0000 1.0000 4.0000 0

0 4.0000 2.0000 1.0000
5.0000 0 1.0000 1.0000
2.0000 4.0000 0 1.0000
5.0000 1.0000 0 1.0000
5.0000 1.0000 1.0000 0
5.5000 0.5000 0.5000 0.5000

20 Chapter 1. The main commands

CW =

0 1 3 3
0 1 4 2
0 2 2 3
0 2 4 1
1 0 3 3
1 0 4 2
3 0 1 3
2 0 4 1
2 2 0 3
3 1 0 3
1 2 4 0
1 5 1 0
2 1 4 0

See also CORESET, COREINFO, BALANCEDGAME,
TOTALBALANCEDGAME, BELONGTOCORE, REPEATEDROWS.

1.11 DUALGAME 21

1.11 DUALGAME
Syntax: v=dualgame(A)

DUALGAME Returns the dual game of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

v=dualgame(A) If A represents the characteristic function of a TU game, v is the
characteristic function of its dual game.
COMMENTS

The dual game w of v is define by w(S) = v(N)− v(N \ S), for every coalition S of
the set of players N .
EXAMPLE

>> A=[0 0 0 2 4 4 23];
>> dual=dualgame(A)
dual =

19 19 21 23 23 23 23

See also NORMALIZEDGAME.

22 Chapter 1. The main commands

1.12 ESSENTIALGAME
Syntax: [E,D]=essentialgame(A)

ESSENTIALGAME Checks if a TU game is essential.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

E=essentialgame(A) If the imputations set of the TU game given by vector A is not
empty E is 1, otherwise E is 0.

[E,D]=essentialgame(A) If the TU game given by vector A is degenerate, i.e. v(N) =∑
i∈N v({i}), D is 1, otherwise D is 0.

COMMENTS
A game is essential if the imputation set is non-empty, or equivalently if v(N) ≥

v(1) + · · · + v(n). When v(N) = v(1) + · · · + v(n) the game is called degenerate or
inessential.
EXAMPLES

>> A=[0 0 0 0 1 1 1 2 3 1 3 3 3 3 8];
>> E=essentialgame(A)
E = 1
>> B=[1 1 1 2 3 4 3];
>> [esencial,degenerado]=essentialgame(B)
esencial = 1
degenerado = 1

See also IMPUTATIONSET, IMPUTATIONVERTICES.

1.13 EXACTGAME 23

1.13 EXACTGAME
Syntax: [E,info,CS]=exactgame(A)

EXACTGAME Checks if a balanced TU game is exact.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

E=exactgame(A) If the balanced TU game given by vector A is exact E is 1, otherwise
E is 0.

[S,info]=exactgame(A) info is a 1× 6 (for a 3 player game) or 1× 14 (for a 4 player
game) row vector with the number of extreme points of the core that belong to hyperplane
j (hyperplanes are ordered as in CORESETINFO).

[E,info,CS]=exactgame(A) CS informs if the core of the balanced game given by A
has a complete structure.
COMMENTS

A balanced game is exact if for each coalition S there is x in the core such that x(S) =
v(S).
EXAMPLES

>> A=[0 0 0 3 5 7 20];
>> [E,info,CS]=exactgame(A)
E = 1
info = 2 2 2 2 2 2
CS =1

>> A=[0 0 0 0 1 1 1 2 3 1 3 3 3 3 8];
>> [E,info,CS]=exactgame(A)
E = 1
info = 6 1 3 6 4 2 4 4 4 4 4 7 4 4
CS =0

See also CORESET, COREINFO, COREVERTICES, BALANCEDGAME.

24 Chapter 1. The main commands

1.14 EXCESSES
Syntax: [excesos,coalicion]=excesses(A,x)

EXCESSES Computes the excesses of an allocation.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. Vector x must be 1× 3. For 4 players the characteristic function must
be introduced with vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134
v234 v1234]. Vector x must be 1× 4.
OUTPUT

excesos=excesses(A,x) Computes the excess vector corresponding to the allocation x.
[excesos,coalicion]=excesses(A,x) Also provides the coalitions where the excesses are

attained.
COMMENTS Given an allocation x ∈ Rn the excess of coalition S ⊂ N with respect to
x is defined as e(S, x) = v(S)− x(S).
EXAMPLE

>> A=[2 3 4 7 5 9 12]; x=[2.5 5 4.5]
>> [excesos,coalicion]=excesses(A,x)

excesos = -0.50 -0.50 -0.50 -0.50 -2.00 -2.00

coalicion = ’1’ ’3’ ’12’ ’23’ ’2’ ’13’

See also NUCLEOLUS, NUCLEOLUSAUX, NUCLEOLUSIMPLEX,
NUCLEOLUSINFO.

1.15 FACESGAMES 25

1.15 FACESGAMES
Syntax: F=facesgames(A)

FACESGAMES Returns the faces games of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

F=facesgames(A) If A represents the characteristic function of a 3 players TU game,
F is a 6 × 7 matrix. If A represents the characteristic function of a 4 players TU game,
F is a 14 × 15 matrix. The i-row of F is the characteristic function of the face game
corresponding to the ith coalition T (according to the lexicographic ordering).
COMMENTS

The face game vT corresponding to coalition ∅ 6= T ⊂ N is define by

vT (S) = v((S ∩ T) ∪N \ T)− v(N \ T) + v(S ∩ (N \ T),

for every coalition S of the set of players N .
If (N, v) is a convex game then the core of each face game is a face of the core of v.

Therefore, the core of game (N, v) is the convex hull of the faces games cores.
EXAMPLE

>> A=[0 0 0 2 4 4 23];
>> F=facesgames(A)
F =

19 0 0 19 19 4 23
0 19 0 19 4 19 23
0 0 21 2 21 21 23
4 4 0 23 4 4 23
2 0 4 2 23 4 23
0 2 4 2 4 23 23

See also CONVEXGAME, BALANCEDGAME, CORESET

26 Chapter 1. The main commands

1.16 HARSANYIDIVIDENDS
Syntax: [HD,unanimidad,Aplus,Aminus]=harsanyidividends(A)

HARSANYIDIVIDENDS Computes the Harsanyi dividends of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

HD=harsanyidividends(A) Provides the Harsanyi dividends of game A.
[HD,unanimidad]=harsanyidividends(A) The rows of unanimidad are the unanimity

games.
[HD,unanimidad,Aplus,Aminus]=harsanyidividends(A) The game A can be decom-

posed as A=Aplus-Aminus. Aplus and Aminus are totally positive, convex and disjoint
games.
COMMENTS

The Harsanyi dividends are the coordinates of game A in the base formed by the
unanimity games. A game is totally positive if all the Harsanyi dividends are non negative.
EXAMPLE

>> A=[3 3 3 2 5 9 9];
>> [HD,unanimidad,Aplus,Aminus]=harsanyidividends(A)
HD = 3 3 3 -4 -1 3 2

unanimidad =
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

Aplus = 3 3 3 6 6 9 14

Aminus = 0 0 0 4 1 0 5

See also HARSANYISET, HARSANYISETINFO.

1.17 HARSANYISET 27

1.17 HARSANYISET
Syntax: harsanyiset(A)

HARSANYISET Draws the Harsanyi set of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

It displays the Harsanyi set of the game defined by A.
COMMENTS

The Harsanyi set of a game A, also called the selectope, is the set of payoffs vectors
obtained by all possible distributions of the Harsanyi dividends of all coalitions amongst
its members. The Harsanyi set coincides with the core of a convex game known as the
Harsanyi mingame.
EXAMPLE

Since, in general, the Harsanyi set is not contained in the imputation set, to have a
clear representation of both we recommend to run the following script. It just computes
the vertices of the mingame imputation set and then draws its sides (in green), in the
coordinates system defined by game A, along with the Harsanyi set and the imputation
set of game A.

>> A=[0 0 0 2 5 5 10];
>> [HD,una,Aplus,Aminus]=harsanyidividends(A);
>> [mingame maxgame]=harsanyisetinfo(A);
>> vertices=imputationvertices(mingame);
>> [M,minvert]=CCimputation3(A,vertices);
>> ventana=[min(minvert) max(minvert)];
>> ejes=[ventana(1) ventana(3) ventana(2) ventana(4)];
>> clf
>> minvert(end+1,:)=minvert(1,:);
>> plot(minvert(:,1)’,minvert(:,2)’,’:.g’)
>> axis(ejes),hold on
>> harsanyiset(A)
>> imputationset3white(A)

See also HARSANYISETINFO, HARSANYIDIVIDENDS.

28 Chapter 1. The main commands

1.18 IMPUTATIONSET
Syntax: imputationset(A)

IMPUTATIONSET Draws the imputation set of an essential non-degenerate TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

It displays the imputation set of the game defined by A.
COMMENTS

The imputations set is defined by

I(v) = {x = (x1, . . . , xn) ∈ Rn : xi ≥ v({i})∀i ∈ N,
n∑
i=1

xi = v(N)}.

It is the set of all individually rational and efficient allocations.
EXAMPLE

>> A=[0 0 0 0 0 0 0 10 10 10 20 20 20 20 30];
>> imputationset(A)

See also IMPUTATIONVERTICES, IMPUTATION3PLOT,
IMPUTATIONSET3WHITE, CCIMPUTATION3, EFFICIENCY.

1.19 IMPUTATIONVERTICES 29

1.19 IMPUTATIONVERTICES
Syntax: [vertices,window]=imputationvertices(A)

IMPUTATIONVERTICES Returns the vertices of the imputation set
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

vertices=imputationvertices(A) the extreme points of the imputation set
[vertices, window]=imputationvertices(A) provides the window limits to draw the im-

putation set in the imputation simplex. window=[xmin xmax ymin ymax] for 3-players
window=[xmin xmax ymin ymax zmin zmax] for 4-players
EXAMPLE

>> A=[0 0 0 0 0 0 0 10 10 10 20 20 20 20 30];
>> [vertices, ventana]=imputationvertices(A)
vertices =

0 0 0 30
0 0 30 0
30 0 0 0
0 30 0 0

ventana =
0 30 0 30 0 30

See also IMPUTATIONSET, IMPUTATION3PLOT, IMPUTATIONSET3WHITE,
CCIMPUTATION3.

30 Chapter 1. The main commands

1.20 MLEXTENSION
Syntax: [MLE,MLEpol]=MLExtension(A)

MLEXTENSION Returns the multi-linear extension of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

MLE=MLExtension(A) MLE is a symbolic variable that contains the multi-linear ex-
tension of the game defined by A. MLE is the expression in factor terms.

[MLE,MLEpol]=MLExtension(A) MLEpol is the multi-linear extension given as a
expanded polynomial.
COMMENTS

The multilinear extension of the game (N, v) is the function f : Rn −→ R defined by

f(x1, . . . , xn) =
∑
S⊂N

{∏
i∈S

xi
∏
j 6∈S

(1− xj)

}
v(S),

for 0 ≤ xi ≤ 1, i = 1, . . . , n.
The Shapley value of a game (N, v) can be computed by means of the multilinear

extension f . Indeed,

Shi =

∫ 1

0

∂f

∂xi
(t, . . . , t)dt, i = 1, . . . , n.

EXAMPLE

>> A=[0 0 0 3 3 1 12];[MLE,MLEpol]=MLExtension(A)
MLE =
3*x*y*(1-z)+3*x*(1-y)*z+(1-x)*y*z+12*x*y*z
MLEpol =
3*x*y+5*x*y*z+3*x*z+y*z

See also SHAPLEY.

1.21 MONOTONICGAME 31

1.21 MONOTONICGAME
Syntax: [M,info]=monotonicgame(A)

MONOTONICGAME Checks if a TU game is monotonic.
INPUT

For 2 players the characteristic function must be introduced with vector A=[v1 v2
v12]. For 3 players the characteristic function must be introduced with vector A=[v1 v2
v3 v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

M=monotonicgame(A) If the TU game given by vector A is monotonic M is 1, other-
wise M is 0.

[M,info]=monotonicgame(A) If the game is not monotonic, info provides an instance
where monotonicity breaks down.
COMMENTS

A game is monotonic if v(S) ≤ v(T) for all coalitions S, T such that S ⊂ T .
EXAMPLE

>> A=[4 0 0 3 3 1 12]; [monotono,info]=monotonicgame(A)
monotono = 0
info =
v{1}>v{12}

See also ZEROMONOTONICGAME.

32 Chapter 1. The main commands

1.22 NORMALIZEDGAME
Syntax: [N,M]=normalizedgame(A)

NORMALIZEDGAME Provides the 0-normalization and the 0-1 normalization of a TU
game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

N=normalizedgame(A) N is the 0-normalization of the TU game given by vector A.
For 3 players N=[w1 w2 w3 w12 w13 w23 w123]. For 4-players N=[w1 w2 w3 w4 w12
w13 w14 w23 w24 w34 w123 w124 w134 w234 w1234].

[N,M]=normalizedgame(A) M is the 0-1 normalization of the TU game given by vec-
tor A. For 3 players M=[u1 u2 u3 u12 u13 u23 u123]. For 4-players M=[u1 u2 u3 u4 u12
u13 u14 u23 u24 u34 u123 u124 u134 u234 u1234].
COMMENTS

The 0-normalization of a TU-game (N, v) is the game given by v0(S) = v(S) −∑
i∈S

v(i) for S ⊂ N . The 0-normalization can be viewed as a change in the values of the

individual coalitions without changing the scale. The 0-1 normalization of an TU-game
(N, v) is the game given by u(S) = kv(S) +

∑
i∈S

αi where k = 1
v(N)−

P
i∈N v(i)

and αi =

−kv(i), i ∈ N . Therefore, the 0-1 normalization exists if and only if v(N)−
∑
i∈N

v(i) 6= 0.

EXAMPLE

>> A=[2 1 0 9 2 1 6];
>> [normal0 normal1]=normalizedgame(A)
normal0 =

0 0 0 6 0 0 3
normal1 =

0 0 0 2 0 0 1

See also ZEROMONOTONICGAME, DUALGAME.

1.23 NUCLEOLUS 33

1.23 NUCLEOLUS
Syntax: [nucleolo,prenucleolo]=nucleolus(A)

NUCLEOLUS The nucleolus of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

nucleolo=nucleolus(A) Computes the nucleolus of a TU game given by vector A. The
nucleolus exists and is unique if the game is essential.

[nucleolo,prenucleolo]=nucleolus(A) Also computes the prenucleolus of game A.
COMMENTS

Let (N, v) be a TU-game such that I(v) 6= ∅. Given an allocation x the complaint,
or excess, of coalition S is defined by e(x, S) = v(S) − x(S). Next, let e(x) denote the
vector of excesses with its elements arranged in decreasing order. The nucleolus is then
the imputation η ∈ I(v) such that

e(η) ≤lex e(x), for all x ∈ I(v).

The nucleolus is the allocation of the imputation set that minimizes the maximal com-
plaint of all coalitions. Whenever the core is nonempty, the nucleolus belongs to the
core. The prenucleolus is the efficient allocation that minimizes the maximal complaint
of all coalitions. Whenever the prenucleolus satisfies individual rationality, i.e. it is an
imputation, coincides with the nucleolus.
WARNING

The nucleolus function computes the nucleolus of a given 3 or 4 persons TU game
by solving a finite number of linear programming problems. Due to the accumulation
of round off errors, the algorithm that solves the linear problems might diverge. That is
why, a number of messages will be issued concerning the convergence of the simplex al-
gorithm. If one of the optimizations was not terminated successfully, the result presented
may not be the nucleolus. In that case you are advised to use the command NUCLEO-
LUSINFO.
EXAMPLES

>> A=[0 0 0 0 3 3 6 8 9 8 6 15 16 17 20];
>> [nucleolo,prenucleolo]=nucleolus(A)

Optimization terminated successfully.
Optimization terminated successfully.
Optimization terminated successfully.
Optimization terminated successfully.

34 Chapter 1. The main commands

nucleolo =
1.50 3.67 4.67 10.17

prenucleolo =

1.50 3.67 4.67 10.17

>> A=[2 1 0 9 2 1 6]
>> [nucleolo,prenucleolo]=nucleolus(A)

Optimization terminated successfully.
Optimization terminated successfully.
Optimization terminated successfully.
Optimization terminated successfully.
Optimization terminated successfully.

nucleolo =

3.5000 2.5000 0

prenucleolo =

4.2500 3.2500 -1.5000

See also SHAPLEY, CORECENTER, TAUVALUE, LINPROG, LINSOL,
CHECKBOUNDS, NUCLEOLUSINFO, NUCLEOLUSAUX, NUCLEOLUSIMPLEX,
PRECISION.

1.24 SHAPLEY 35

1.24 SHAPLEY
Syntax: [Sh,WP]=Shapley(A)

SHAPLEY The Shapley value of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234]. For 5
players the characteristic function must be introduced with vector A=[v1 v2 v3 v4 v5 v12
v13 v14 v15 v23 v24 v25 v34 v35 v45 v123 v124 v125 v134 v135 v145 v234 v235 v245
v345 v1234 v1235 v1245 v1345 v2345 v12345].
OUTPUT

Sh=Shapley(A) Computes the Shapley value S of a TU game given by vector A.
[Sh,WP]=Shapley(A) Also provides the marginal contribution vectors.

COMMENTS
Let σ : N → {1, . . . , n} be an ordering of the agents and ΠN be the set of all orderings

of N . The marginal vector with respect to the order σ ∈ ΠN is

mσ
i = v({j ∈ N : σ(j) ≤ σ(i)})− v({j ∈ N : σ(j) < σ(i)}).

The Shapley value φ(v) is the allocation rule that assigns to each agent i his expected
marginal contribution, presuming that each of the n! orders occurs equally likely:

φi(v) =
1

n!

∑
σ∈ΠN

mσ
i , i ∈ N.

EXAMPLE

>> A=[0 0 0 6 5 5 10];
>> [Sh,contribuciones]=Shapley(A)
Sh =

3.5000 3.5000 3.0000
contribuciones =

0 6 4
0 5 5
6 0 4
5 0 5
5 5 0
5 5 0

See also NUCLEOLUS, CORECENTER, TAUVALUE.

36 Chapter 1. The main commands

1.25 SUPERADDITIVEGAME
Syntax: [S,info]=superadditivegame(A)

SUPERADDITIVEGAME Checks if a TU game is superadditive.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

S=superadditivegame(A) If the TU game given by vector A is superadditive S is 1,
otherwise S is 0.

[S,info]=superadditivegame(A) If the game is not superadditive, info provides an in-
stance where superadditivity breaks down.
COMMENTS

A game is superadditive if v(S ∪ T) ≥ v(S) + v(T), for all disjoint coalitions S, T ⊂
N .
EXAMPLE

>> A=[1 2 3 2 4 5 6];
>> [super,info]=superadditivegame(A)
super = 0
info =
(v12-v2)<v1

See also ADDITIVEGAME, CONVEXGAME.

1.26 TAUVALUE 37

1.26 TAUVALUE
Syntax: [tau,alfa]=tauvalue(A)

TAUVALUE The tau-value of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

tau=tauvalue(A) Computes the tau-value of a TU game given by vector A. The tau-
value can only be computed if the game is of admissible compromise.

[tau,alfa]=tauvalue(A) alfa is the scalar number such that tau=m+alfa*(M-m), where
M and m are the utopia payoffs and the minimum rights vectors respectively.
COMMENTS

The τ -value is defined as the efficient allocation τ , i.e.
∑

i∈N τi = v(N), such that
τ = m+α(M−m) for some α, where M and m are the utopia payoffs and the minimum
rights vectors respectively. The τ -value can only be computed if the game is of admissible
compromise.
EXAMPLE

>> A=[0 0 0 9 4 7 11];
>> [tau,alfa]=tauvalue(A)
tau =

3.3333 6.3333 1.3333
alfa =

0.6667

See also ADMISSIBLEGAME, UTOPIAPAYOFFS, NUCLEOLUS,
CORECENTER, SHAPLEY.

38 Chapter 1. The main commands

1.27 TOTALBALANCEDGAME
Syntax: [TB,info]=totalbalancedgame(A)

TOTALBALANCEDGAME Checks if a TU game is totally balanced.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

TB=totalbalancedgame(A) If the TU game given by vector A is totally balanced TB is
1, otherwise TB is 0. Balancedness is determined by the Bondareva-Shapley conditions.

[TB,info]=totalbalancedgame(A) If the game is not totally balanced, i.e., one subgame
has empty core, then info provides an instance of a subgame that is not balanced.
COMMENTS

A game is totally balanced if all its subgames are balanced. A subgame of a TU-game
(N, v) is a game (R, vR) such that R ⊂ N and vR(S) = v(S) for all S ⊂ R.
EXAMPLE

>> A=[0 0 0 0 1 0 0 0 0 0 0 1 0 0 1];
>> [totalequilibrado,info]=totalbalancedgame(A)
totalequilibrado =

0
info =
The subgame given by the coalition S={1,2,3}
is not balanced, because v{123}<(v{3}+v{12})

See also BALANCEDGAME.

1.28 UTOPIAPAYOFFS 39

1.28 UTOPIAPAYOFFS
Syntax: [M,m]=utopiapayoffs(A)

UTOPIAPAYOFFS The utopia payoffs of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

M=utopiapayoffs(A) Returns the utopia payoffs M of the players of a TU game given
by vector A.

[M,m]=utopiapayoffs(A) m is the minimum rights vector of the TU game given by
vector A.
COMMENTS

The utopia payoff for player i is given byMi = v(N)−v(N \{i}), i.e., is the marginal
contribution of player i in the grand coalition. The minimum right for player i is defined

by mi = max
S:i∈S

v(S)−
∑

j∈S\{i}

Mj

.

EXAMPLE

>> A=[0 0 0 9 4 7 11];
>> [M,m]=utopiapayoffs(A)
M = 4 7 2

m = 2 5 0

See also ADMISSIBLEGAME, TAUVALUE, CORECOVERSET.

40 Chapter 1. The main commands

1.29 WEBERSET
Syntax: weberset(A)

WEBERSET Draws the Weber set of an essential non-degenerate TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

It displays the Weber set of the game defined by A.
COMMENTS

The Weber set is the convex hull of all the marginal vectors

W (v) =

{ ∑
σ∈ΠN

ασm
σ : ασ ≥ 0,∀σ ∈ ΠN ;

∑
σ∈ΠN

ασ = 1

}
.

The core is always a subset of the Weber set: C(v) ⊂ W (v). C(v) = W (v) if and only if
the game (N, v) is convex.
EXAMPLE

>> A=[0 0 0 0 7 7 7 7 7 7 12 12 12 12 22];
>> imputationset(A), axis(axis),hold on
>> weberset(A)

See also WEBERVERTICES, WEBER4AUX, WEBERINFO,
WEBERINFOEXTRA, WEBERVERTICESEXTRA, POLIGONORDER,
HYPERPLANE, FACETSORDER, CHECKSEGMENT, GRAMSCHMIDT.

1.30 WEBERVERTICES 41

1.30 WEBERVERTICES
Syntax: [Wextremes,Wnoextremes]=webervertices(A)

WEBERVERTICES Provides the vertices of the Weber set of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

Wextremes=webervertices(A) Wextremes is a matrix whose rows are the marginal
contribution vectors that are extreme points of the Weber set.

[Wextremes,Wnoextremes]=webervertices(A) Wnoextremes are those marginal con-
tribution vectors that are a convex combination of others and, therefore, are not vertices
of the Weber set.
COMMENTS

The Weber set is the convex hull of the marginal worth vectors. Naturally, some
marginal worth vectors may not be extreme points of the Weber set.
EXAMPLE

>> A=[0 0 0 10 4 4 10];
>> [extremos, noextremos]=webervertices(A)
extremos =

6 0 4
10 0 0
0 10 0
0 6 4

noextremos =
6 4 0
4 6 0

See also WEBERSET, WEBER4AUX, WEBERINFO, WEBERINFOEXTRA,
WEBERVERTICESEXTRA, POLIGONORDER, HYPERPLANE, FACETSORDER,
CHECKSEGMENT, GRAMSCHMIDT, REPEATEDROWS.

42 Chapter 1. The main commands

1.31 ZEROMONOTONICGAME
Syntax: M=zeromonotonicgame(A)

ZEROMONOTONICGAME Checks if a TU game is 0-monotonic.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

M=zeromonotonicgame(A) If the TU game given by vector A is 0-monotonic M is 1,
otherwise M is 0.
COMMENTS

A game is 0-monotonic if its 0-normalization is monotonic or, equivalently, if v(S) +∑
i∈T\S

v(i) ≤ v(T) for all S ⊂ T .

EXAMPLE

>> A=[1 0 0 1 1 1 1]
A =

1 0 0 1 1 1 1

>> M=zeromonotonicgame(A)
M = 0

See also MONOTONICGAME, NORMALIZEDGAME.

Chapter 2

The auxiliary commands

The TUGlab toolbox includes 27 auxiliary files, that is, commands that do not define
a procedure directly related to game theory but that provide information and perform
computations needed to run the main commands. Some of them have an interest of their
own and therefore are explained in this chapter.

For each command we include:

1. The syntax.

2. The Matlab help information.

3. The input variables.

4. The output variables.

5. Some comments regarding the TU game concepts associated with the command and
any information that could be of interest to understand how the command operates.

6. An example.

7. A list of related TUGlab commands.

44 Chapter 2. The auxiliary commands

2.1 CCIMPUTATION3
Syntax: [M,q]=CCimputation3(A,p)

CCIMPUTATION3 Coordinates in the imputation set triangle of a 3-persons game.
INPUT

The characteristic function must be introduced with vector A=[v1 v2 v3 v12 v13 v23
v123]. p is a m × 3 matrix whose rows are the true coordinates of m imputation alloca-
tions.
OUTPUT

M=CCimputation3(A,p) is the matrix of the linear application that maps the imputa-
tion set of game A, a simplex in R3, into the triangle T in R2 defined by the vertices (0, 0),
(L, 0) and (L

2
,
√

3
2
L), being L = V (N)− (v(1) + · · ·+ v(n)).

[M,q]=CCimputation3(A,p) The rows of q (am×2 matrix) are the images of the rows
of p by M,that is, the ith-row of q represents the coordinates of the ith-imputation vector
of p in the triangle T.
EXAMPLE

>> A=[0 0 0 10 4 4 10];
>> p=[4.3333 4.3333 1.3333; 5 5 0];
>> [M,q]=CCimputation3(A,p)
M =

0 1.0000 0.5000
0 0 0.8660

q =

5.0000 1.1547
5.0000 0

See also IMPUTATIONSET, IMPUTATIONVERTICES, IMPUTATION3PLOT,
IMPUTATIONSET3WHITE.

2.2 CENTROIDGAME3 45

2.2 CENTROIDGAME3
Syntax: v=centroidgame3(A)

CENTROIDGAME3 Auxiliary game to compute the corecenter of a 3-persons game.
INPUT

The characteristic function must be introduced with vector A=[v1 v2 v3 v12 v13 v23
v123].
OUTPUT

v=centroidgame3(A) If A represents the characteristic function of a 3-players TU
game, v is the characteristic function of a convex game whose Shapley value is the core-
center of game A.
COMMENTS

The game A must be convex with full dimensional core. Otherwise you should avoid
dummy players and work with the reduced game since the core-center satisfies the dummy
player property.
EXAMPLE

>> A=[0 0 0 1 2 3 7];

>>c = centroidgame3(A)

c = -1.0286 -0.5714 -0.1714 -1.6000 -1.2000

-0.7429 7.0000

See also CORECENTER, SHAPLEY.

46 Chapter 2. The auxiliary commands

2.3 CHECKBOUNDS
Syntax: [x,lb,ub,msg] = checkbounds(xin,lbin,ubin,nvars)

CHECKBOUNDS Move the initial point within the (valid) bounds.
COMMENTS

This file is part of the Matlab Optimization Toolbox. TUGlab uses it in the computa-
tion of the Nucleolus to solve several linear programming optimization routines.
NOTE

Copyright 1990-2002 The MathWorks, Inc.
Revision: 1.5, Date: 2002/03/12 20:36:16.
Mary Ann Branch 5-1-98.

2.4 CHECKSEGMENT 47

2.4 CHECKSEGMENT
Syntax: [info,neworder]=checksegment(points,order)

CHECKSEGMENT Checks if points are in the same line.
INPUT

points is a 3 × 2 or 3 × 3 matrix whose rows are the points we want to know if are
aligned. order is a 1× 3 vector indicating some ordering (the reference of these points in
some matrix) of the 3 points. For instance, points=[0 1 2;0 2 3;0 4 5], order=[1 7 3]. If
vector order is not provided then [1 2 3] is used.
OUTPUT

[info,neworder]=checksegment(points,order) info is 1 if the point are in the same line
and 0 otherwise. If they are aligned then neworder puts the middle point of the segment
in the second place.
EXAMPLE

>> points=[0 1 2;0 4 5; 0 2 3];

>> [a,b]=checksegment(points)

a = 1

b = 1 3 2

>> order=[1 7 3]
order = 1 7 3

>> [a,b]=checksegment(points,order)

a = 1

b = 1 3 7

See also CONVEXHULLEXTREMES.

48 Chapter 2. The auxiliary commands

2.5 CONVEXHULLEXTREMES

Syntax:
[extremes, noextremes, refextremes, refnoextremes]=

convexhullextremes(points,initial)

CONVEXHULLEXTREMES The extreme points of the convexhull.
INPUT

points is a m× 2 matrix whose rows are the points that determined the convex hull.
initial is a 1xm matrix with the points reference. By default its value is [1:m].

OUTPUT
extremes=convexhullextremes(points,initial) Provides the extreme points of the con-

vex hull defined by the row vectors of matrix points.
[extremes,noextremes]=convexhullextremes(points,initial) noextremes gives the orig-

inal points that are not extremes of the convex hull.
[extremes, noextremes, refextremes, refnoextremes] = convexhullextremes(points,

initial) refextremes and refnoextremes gives the new references.
COMMENTS

The Matlab command CONVHULL computes the points that belong to the border
of the convex hull. CONVEXHULLEXTREMES deletes those points which are in the
interior of the polytope facets.
EXAMPLE

>> points=[6 0 ; 10 0 ; 0 10 ; 0 6 ; 6 4 ; 4 6];

>> initial=[6 5 4 3 2 1];

>> [a,b,c,d]=convexhullextremes(points,initial)
a =

6 0
10 0
0 10
0 6

b =
6 4
4 6

c =
6 5 4 3

d =
2 1

See also CHECKSEGMENT.

2.6 CORECOVERINFO 49

2.6 CORECOVERINFO

Syntax:
[CCextremes,hiperplanos,faces,numpuntos,numplanos,

planosactivos,extremosxplano,MPC]=

corecoverinfo(A)
CORECOVERINFO Information needed to draw the core-cover of a TU game.
INPUT

For 4 players the characteristic function must be introduced with vector A=[v1 v2 v3
v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

CCextremes=corecoverinfo(A) the extreme points of the core-cover.
hiperplanos= each hyperplane is a 1x3 or 1x4 vector with the coefficients of the equa-

tion of the hyperplane of each face of the core-cover. Therefore, [a b c] means ax+by+c=0,
and [a b c d] means ax+by+cz+d=0.

faces = matrix of faces ready to be used with the order PATCH (4 players). For
instance if the first row is [1 2 3 3 3 3] that means that the first face of the core-cover
is formed by the extreme points that are in the positions 1, 2, and 3 in CCextremes.

numpuntos = number of different extreme points.
numplanos = number of faces of the core-cover.
planosactivos = the planes to which at least 3 extreme points belong.
extremosxplano = matrix of size (numpuntos)X8 such that aij = 1 if point i belongs

to plane j or aij = 0 if point i does not belong to plane j.
MPC = maximum number of points in any face.

COMMENTS
For a 3-persons game, the core-cover coincides with the core, so COREINFO can be

used instead of CORECOVERINFO.
EXAMPLE

>> A=[0 0 0 0 7 7 7 7 7 7 12 12 12 12 22];

>> [a,b,c,d,e,f,g]=corecoverinfo(A)

a =
0 10 10 2
0 10 2 10
0 2 10 10
10 0 10 2
10 0 2 10
10 10 0 2

50 Chapter 2. The auxiliary commands

10 10 2 0
10 2 0 10
10 2 10 0
2 0 10 10
2 10 0 10
2 10 10 0

b =
1 0 0 0

-1 0 0 10
0 1 0 0
0 -1 0 10
0 0 1 0
0 0 -1 10
1 1 1 -12

-1 -1 -1 22
c =

1 2 3 3 3 3
5 8 6 7 9 4
4 5 10 10 10 10
2 11 6 7 12 1
6 8 11 11 11 11
3 10 4 9 12 1
3 10 5 8 11 2
7 9 12 12 12 12

d =
12

e =
8

f =
1 2 3 4 5 6 7 8

g =
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 0
0 1 1 0 0 1 0 0
0 1 1 0 0 0 1 0
0 1 0 1 1 0 0 0
0 1 0 1 0 0 0 1
0 1 0 0 1 0 1 0
0 1 0 0 0 1 0 1
0 0 1 0 0 1 1 0
0 0 0 1 1 0 1 0
0 0 0 1 0 1 0 1

2.6 CORECOVERINFO 51

h = 6

See also See also CORECOVERSET, CORECOVERVERTICES,
ADMISSIBLEGAME, UTOPIAPAYOFFS, REPEATEDROWS.

52 Chapter 2. The auxiliary commands

2.7 COREINFO

Syntax:
[Cextremes,hiperplanos,faces,numpuntos,numplanos,

planosactivos,extremosxplano,MPC]=coreinfo(A)

COREINFO provides the information needed to draw the core of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

Cextremes = the extreme points of the core.
hiperplanos = each hyperplane is a 1x3 or 1x4 vector with the coefficients of the equa-

tion of the hyperplane of each face of the core-cover. Therefore, [a b c] means ax+by+c=0,
and [a b c d] means ax+by+cz+d=0.

faces = ordered extreme points ready to be use with FILL. matrix of faces ready to be
used with the order PATCH (For 4 players). For instance, with 4 players, if the first row is
[1 2 3 3 3 3 3 3] that means that the first face of the core is formed by the extreme points
that are in the positions 1, 2, and 3 in Cextremes.

numpuntos = number of different extreme points.
numplanos = number of faces of the core.
planosactivos = the planes to which at least 3 extreme points belong.
puntosxplano = matrix of size (numpuntos)X14 such that aij = 1 if point i belongs to

plane j or aij = 0 if point i does not belong to plane j.
MPC = maximum number of points in any face.

COMMENTS
The core consists of all the stable imputations, that is, the set of all x = (x1, ..., xp)

such that x1 + ...+ xp = v(N) and x(S) ≥ v(S), S ⊂ N .
EXAMPLE

>> A=[0 0 0 6 5 5 10]

>> [a,b,c,d,e,f,g]=coreinfo(A)

a =
5 5 0
5 1 4
1 5 4

b =
1 0 0

2.7 COREINFO 53

-1 0 5
0 1 0
0 -1 5
1 1 -6
-1 -1 10

c =
1 2 3

d =
3

e =
3

f =
2 4 5

g =
0 1 0 1 0 1
0 1 0 0 1 0
0 0 0 1 1 0

h=2

See also See also CORESET, COREVERTICES, BALANCEDGAME,
TOTALBALANCEDGAME, BELONGTOCORE, REPEATEDROWS.

54 Chapter 2. The auxiliary commands

2.8 EFFICIENCY
Syntax: v=efficiency(b,vn)

EFFICIENCY Adds the last component of a vector to be an efficient allocation.
INPUT

b should be a nx2 or nx3 matrix and vn a scalar. The rows of b represent imputations
without the last coordinate and vn the value of the grand coalition.
OUTPUT

v=efficiency(b,vn) v is a matrix obtained by adding to matrix b one column, such that
the row vectors of v are efficient allocations.
COMMENTS

An allocation x = (x1, . . . , xn) is efficient if x1 + · · ·+xn = v(N), where v(N) is the
value of the grand coalition. Therefore, the last coordinate of an imputation can always

be omitted, because xn = v(N)−
n−1∑
j=1

xj .

EXAMPLE

>> b=[1 2; 2 4;3 5];

>> vn=10;

>> v=efficiency(b,vn)

v =

1 2 7
2 4 4
3 5 2

See also IMPUTATIONSET, IMPUTATIONVERTICES.

2.9 FACETSORDER 55

2.9 FACETSORDER

Syntax:
[refextremes,refnoextremes,extremes,noextremes]=

facetsorder(facet,points,ref)

FACETSORDER The extreme points of the convex hull of the points in one facet.
INPUT

facet = a 1× 4 vector that defines the facet. If facet=[a b c d] then all the points must
belong to the plane ax+ by + cz = d.

points = a m × 3 matrix whose rows are points that belong to the plane defined by
vector facet and whose convex hull extreme points we want to compute.

ref= a 1xm matrix with the points reference. By default its value is [1:m].
OUTPUT

[refextremes refnoextremes extremes noextremes]=facetsorder(facet,points,ref) Pro-
vides the extreme points of the convex hull defined by the row vectors of matrix points.

refextremes provides the extreme points reference.
refnoextremes provides the non extremes points reference.
extremes gives the 2D-coordinates of the extreme points in the projected space.
noextremes gives the 2D-coordinates of the non extreme points in the projected space.

COMMENTS
The Matlab CONVHULLN command returns the convex hull of a set of given points.

In fact, it returns the indices of the points that comprise the facets of the convex hull, and
the facets are taken to be triangles. Some of these triangles could define the same facet
of the convex hull polyhedron and, as a consequence, some points may not be vertices.
The FACETSORDER command takes a number of 3-D points that belong to one plane,
projects that plane in the 2-D euclidean space, computes the convex hull of the projected
points and brings that information back to the 3-D plane. The projection is done by
creating a orthonormal basis of the 3-D euclidean space formed by a basis of the plane
and the normal vector. To build it we make use of the Gram-Schmidt method.
EXAMPLE

>> facet=[1 2 3 4];
>> points=[0 1 2/3; 1 0 1; 2 2 -2/3; 1/2 1/2 5/6];
>> [a,b,c,d]=facetsorder(facet,points)
a =

1 2 3
b =

4
c =

0 0
1.4530 0.0000

56 Chapter 2. The auxiliary commands

0.3824 2.5752
d =

0.7265 0

See also CONVEXHULLEXTREMES, GRAMSCHMIDT.

2.10 GRAMSCHMIDT 57

2.10 GRAMSCHMIDT
Syntax: ortonormal=gramschmidt(Base)

GRAMSCHMIDT The 3-D Gram-Schmidt orthonormalization method.
INPUT

Base must be a 3 × 3 matrix whose rows are a base of the 3-dimensional euclidean
space.
OUTPUT

The function returns the orthonormal base of the 3-dimensional euclidean space given
by the Gram-Schmidt method.
COMMENTS

Given a base B = {a1, a2, a3} the Gram-Schmidt method provides an orthonormal
base O = {b1, b2, b3} such that the subspaces generated by {a1}, {a1, a2} and {a1, a2, a3}
coincide with the subspaces generated by {b1}, {b1, b2} and {b1, b2, b3}, respectively.
EXAMPLE

>> base=[0 1 2/3; 1 0 1; 2 2 -2/3]

>> gramschmidt(base)

ans =

0 0.8321 0.5547
0.7687 -0.3548 0.5322
0.6396 0.4264 -0.6396

See also FACETSORDER.

58 Chapter 2. The auxiliary commands

2.11 HARSANYISETINFO
Syntax: [mingame,maxgame]=harsanyisetinfo(A)

HARSANYISETINFO Provides the information of the Harsanyi set of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

[mingame,maxgame]=harsanyisetinfo(A) Returns the Harsanyi mingame and max-
game of the game A.
COMMENTS

The Harsanyi set H coincides with the core of the mingame which is always a convex
game. The mingame m and the maxgame M are defined by

m(S) = min{x(S) : x ∈ H}
M(S) = max{x(S) : x ∈ H},

for every coalition S ⊂ N .
EXAMPLE

>> A=[0 0 0 2 5 5 10];
>> [m,M]=harsanyisetinfo(A)
m =

-2 -2 -2 0 3 3 10
M =

7 7 10 12 12 12 10

See also HARSANYIDIVIDENS, HARSANYISET.

2.12 HERONFORMULA 59

2.12 HERONFORMULA
Syntax: [area,baricentro]=heronformula(P)

HERONFORMULA Area and barycenter of a triangle using Heron’s formula.
INPUT

P must have 3 rows and, at least, 2 columns.
OUTPUT

area=heronformula(P) Computes the area of the triangle whose vertices are given by
the row vectors of P. The area is computed using Heron’s formula.

[area,baricentro]=heronformula(P) Also provides the barycenter of the given triangle.
COMMENTS

Heron’s formula provides the area of a triangle as a function of the lengths of its sides.
If a, b and c are the lengths of the 3 sides of a triangle then the area of the triangle is
Area =

√
s(s− a)(s− b)(s− c), where s = 1

2
(a+ b+ c).

EXAMPLE

>> P=[2 3; 5 3; 7 4]
P =

2 3
5 3
7 4

>> [area,baricentro]=heronformula(P)
area =

1.5000
baricentro =

4.6667 3.3333

See also CORECENTER.

60 Chapter 2. The auxiliary commands

2.13 HYPERPLANE
Syntax: hiperplano=hyperplane(points)

HYPERPLANE Equation of the n-hyperplane (n=2,3) passing through n points.
INPUT

points is a 3 × 2 or 3 × 3 matrix whose rows are the points that determine the hyper-
plane.
OUTPUT

hiperplano is a 1 × 3 or 1 × 4 vector with the coefficients of the equation of the
hyperplane passing through the given points. If hiperplano=[a b c] then the equation
of the line is ax + by = c. If hiperplano=[a b c d] then the equation of the plane is
ax+ by + cz = d.
EXAMPLE

>> points=[2 3 5; 5 3 6; 7 4 1];

>> hyperplane(points)
ans =

1 -17 -3 -64

See also POLIGONORDER.

2.14 IMPUTATION3PLOT 61

2.14 IMPUTATION3PLOT
Syntax: imputation3plot(A,points,color)

IMPUTATION3PLOT Plotting in the imputations triangle.
INPUT

The characteristic function must be introduced with vector A=[v1 v2 v3 v12 v13 v23
v123].

points is a nx3 matrix whose rows are the points to be plotted.
color is a string defining the color and mark of the points, ready to be used with the

command plot. By default color=’*b’ (asterisk and blue).
OUTPUT

Plots the row points into the imputation triangle of game A.
COMMENTS

To plot a point (x,y,z,t) use the order plot3.
plot3(x,y,z,’bo’) Draws a blue circle.
plot3(x,y,z,’k*’) Draws a black asterisk.
plot3(x,y,z,’g<’) Draws a green sign ¡.

EXAMPLE

>>A =[0 0 0 2 5 5 10];

>> imputationset(A)

>> hold on, axis(axis)

>> punto=[5 1 4];

>> imputation3plot(A,punto,’*b’)

See also See also IMPUTATIONVERTICES, IMPUTATIONSET3WHITE,
CCIMPUTATION3.

62 Chapter 2. The auxiliary commands

2.15 IMPUTATIONSET3WHITE
Syntax: imputationset3white(A)

IMPUTATIONSET3WHITE Draws a transparent imputation set for a 3-players TU game.
INPUT

The characteristic function must be introduced with vector A=[v1 v2 v3 v12 v13 v23
v123].
OUTPUT

Plots the imputation set for a 3-players TU game with no background color.
EXAMPLE

>> A=[0 0 0 2 5 5 10];

>> imputationset3white(A)

See also IMPUTATIONSET, IMPUTATIONVERTICES, IMPUTATION3PLOT,
CCIMPUTATION3, EFFICIENCY.

2.16 LINPROG 63

2.16 LINPROG
Syntax: [x,fval,exitflag,output,lambda]=linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)

LINPROG Solves the linear programming problem:

Min f ′ · x

subject to :

Ax ≤ B
Aeqx = Beq
lb ≤ x ≤ ub

COMMENTS
This file is part of the Matlab Optimization Toolbox. TUGlab uses it in the computa-

tion of the Nucleolus to solve several linear programming optimization routines.
NOTE

Copyright 1990-2002 The MathWorks, Inc.
Revision: 1.23, Date: 2002/03/12 20:36:20.

64 Chapter 2. The auxiliary commands

2.17 LIPSOL

Syntax:
[xsol,fval,lambda,exitflag,output]=

lipsol(f,Aineq,bineq,Aeq,beq,lb,ub,options,defaultopt,computeLambda)

LIPSOL Linear programming interior-point solver.
COMMENTS

This file is part of the Matlab Optimization Toolbox. TUGlab uses it in the computa-
tion of the Nucleolus to solve several linear programming optimization routines.
NOTE

Copyright 1990-2002 The MathWorks, Inc.
Revision: 1.23, Date: 2002/03/12 20:36:20.

2.18 NUCLEOLUSAUX 65

2.18 NUCLEOLUSAUX

Syntax:
[CC,bb,CCeq,bbeq,indep]=nucleolusaux(C,b,Ceq,beq,saturadas,e,cifras)

NUCLEOLUSAUX Linear programming problems used in nucleolus computation.
INPUT

C, b = The matrix C and vector b are, respectively, the coefficients of the linear in-
equality constraints and the corresponding right-hand side vector: C · x ≤ b.

Ceq, beq = The matrix Ceq and vector beq are, respectively, the coefficients of the
linear equality constraints and the corresponding right-hand side vector: Ceq · x ≤ beq.

saturadas = The reference of the binding inequality constraints.
e = The value of the corresponding optimum vector of excesses component.
cifras = The precision (number of accurate decimal places).

OUTPUT
CC, bb = The matrix CC and vector bb are, respectively, the coefficients of the new

linear inequality constraints and the corresponding right-hand side vector: CC · x ≤ b.
CCeq, bbeq = The matrix Ceq and vector bbeq are, respectively, the coefficients of the

new linear equality constraints and the corresponding right-hand side vector: CCeq · x =
bbeq.

indep = The number of independent equality constraints in the new linear program-
ming problem.
COMMENTS

The nucleolus function computes the nucleolus of a given 3 or 4 persons TU game by
solving a finite number of linear programming problems. The NUCLEOLUSAUX func-
tion takes the linear programing problem solved in the step n and its solution and pro-
vides the linear programming problem that should be solved in step n+ 1. In addition, it
computes the number of independent equality constraints in the new linear programming
problem. If this number is greater or equal than the number of players, the nucleolus
is the solution of the corresponding linear system of equations and the process reaches
the end. This function can only be used in conjunction with NUCLEOLUSIMPLEX and
NUCLEOLUSINFO.
EXAMPLE

>>C =[
-1 0 0 0 -1
0 -1 0 0 -1
0 0 -1 0 -1
0 0 0 -1 -1
-1 -1 0 0 -1
-1 0 -1 0 -1

66 Chapter 2. The auxiliary commands

-1 0 0 -1 -1
0 -1 -1 0 -1
0 -1 0 -1 -1
0 0 -1 -1 -1

-1 -1 -1 0 -1
-1 -1 0 -1 -1
-1 0 -1 -1 -1
0 -1 -1 -1 -1];

>>b =[0 -2 -2 0 -5 -5 0 -5 -2 -2 -9 -5 -5 -5]’;
>>Ceq = [1 1 1 1 0]; beq = 11; saturadas =[4 11];
>>e = -1; cifras = 6;
>>[x,y,z,t,u]=nucleolusaux(C,b,Ceq,beq,saturadas,e,cifras)
x =

-1 0 0 0 -1
0 -1 0 0 -1
0 0 -1 0 -1

-1 -1 0 0 -1
-1 0 -1 0 -1
-1 0 0 -1 -1
0 -1 -1 0 -1
0 -1 0 -1 -1
0 0 -1 -1 -1

-1 -1 0 -1 -1
-1 0 -1 -1 -1
0 -1 -1 -1 -1

y =
0

-2
-2
-5
-5
0

-5
-2
-2
-5
-5
-5

z =
1 1 1 1 0
0 0 0 -1 0

2.18 NUCLEOLUSAUX 67

t =
11
-1

u =
2

See also NUCLEOLUSINFO, NUCLEOLUSIMPLEX, NUCLEOLUS, PRECISION.

68 Chapter 2. The auxiliary commands

2.19 NUCLEOLUSIMPLEX

Syntax:
[reparto,e1,saturadas,sistema]=nucleolusimplex(A,C,b,Ceq,beq,codigo,cifras)

NUCLEOLUSIMPLEX Linear programming algorithm for computing the nucleolus.
INPUT

A = The objective function.
C, b = The matrix C and vector b are, respectively, the coefficients of the linear in-

equality constraints and the corresponding right-hand side vector: C · x ≤ b.
Ceq, beq = The matrix Ceq and vector beq are, respectively, the coefficients of the

linear equality constraints and the corresponding right-hand side vector: Ceq · x = beq.
codigo = 1 if computing the nucleolus, 2 if computing the prenucleolus.
cifras = The precision (number of accurate decimal places).

OUTPUT
reparto = All the components of the optimal solution, except the last one, which give

the allocation.
e1 = The last component of the optimal solution, which gives the excess.
saturadas = The binding inequality constraints at the optimum.
sistema = It is a cell that contains the following information: The objective function,

matrices C, b, Ceq and beq, the lower and upper constraints of the variables, the vectors
reparto, e1, saturadas and convergencia (1 if the algorithm converge, any other number
otherwise).
COMMENTS The nucleolus function computes the nucleolus of a given 3 or 4 persons
TU game by solving a finite number of linear programming problems. The NUCLEO-
LUSIMPLEX function takes the linear programing problem of step n and provides its
optimal solution. In addition, it saves the information concerning the convergence of the
optimization algorithm used. This function can only be used in conjunction with NU-
CLEOLUSAUX and NUCLEOLUSINFO.
EXAMPLE

>>A =[0 2 2 0 5 5 0 5 2 2 9 5 5 5 11];
>>C =[

-1 0 0 0 -1
0 -1 0 0 -1
0 0 -1 0 -1
0 0 0 -1 -1
-1 -1 0 0 -1
-1 0 -1 0 -1
-1 0 0 -1 -1
0 -1 -1 0 -1

2.19 NUCLEOLUSIMPLEX 69

0 -1 0 -1 -1
0 0 -1 -1 -1
-1 -1 -1 0 -1
-1 -1 0 -1 -1
-1 0 -1 -1 -1
0 -1 -1 -1 -1];

>>b =[0 -2 -2 0 -5 -5 0 -5 -2 -2 -9 -5 -5 -5]’;
>>Ceq =[1 1 1 1 0];
>>beq = 11; codigo = 1; cifras = 6;
>>[r,s,t,u]=nucleolusimplex(A,C,b,Ceq,beq,codigo,cifras)

r =
2.4066
3.7967
3.7967
1.0000

s =
-1

t =
4
11

u =
Columns 1 through 4

[1x5 double] [14x5 double] [14x1 double] [1x5 double]
Columns 5 through 8

[11] [1x5 double] [1x5 double] [4x1 double]
Columns 9 through 11

[-1.0000] [2x1 double] [1]

To access the information stored in the cell u just write:

>> f=u{1}, C=u{2}, b=u{3}, Ceq=u{4}, beq=u{5}
>> lb=u{6}, ub=u{7}, allocation=u{8}
>> excess=u{9}, binding=u{10}, convergence=u{11}

See also NUCLEOLUSAUX, NUCLEOLUSINFO, NUCLEOLUS, PRECISION.

70 Chapter 2. The auxiliary commands

2.20 NUCLEOLUSINFO
Syntax: [nucleolo,infoN,prenucleolo,infoPN]=nucleolusinfo(A,cifras)

NUCLEOLUSINFO Returns the nucleolus and the prenucleolus with a given accuracy.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234]. The
natural number cifras indicates the precision (number of accurate decimal places).
OUTPUT

nucleolo = The nucleolus of the given TU game.
infoN = It is a cell that stores the information concerning all the linear programming

problems solved to obtain the nucleolus.
prenucleolo = The prenucleolus of the given TU game.
infoPN = It is a cell that stores the information concerning all the linear programming

problems solved to obtain the prenucleolus.
COMMENTS

The nucleolus is the allocation of the imputation set that minimizes the maximal com-
plaint of all coalitions. Whenever the core is nonempty, the nucleolus belongs to the
core. The prenucleolus is the efficient allocation that minimizes the maximal complaint
of all coalitions. Whenever the prenucleolus satisfies individual rationality, i.e. it is an
imputation, coincides with the nucleolus.

The nucleolusinfo function computes the nucleolus and the prenucleolus of a given 3
or 4 persons TU game by solving a finite number of linear programming problems. Due to
the accumulation of round off errors, the algorithm that solves the linear problems might
diverge. That is why, a number of messages will be issued concerning the convergence
of the simplex algorithm. If one of the optimizations was not terminated successfully, the
result presented may not be the nucleolus. In that case, you are advised to change the
accuracy using different values of the input cifras.
EXAMPLE

>>A=[0, 0, 0, 0, 0, 1, 2, 2, 3, 0, 2, 3, 2, 3, 4];
>> cifras=6;
>> [a,b,c,d]=nucleolusinfo(A,cifras)

Optimization terminated successfully.
Optimization terminated successfully.
Optimization terminated successfully.
Optimization terminated successfully.

a =
0.5000 1.5000 0.5000 1.5000

b =

2.20 NUCLEOLUSINFO 71

{1x11 cell} {1x11 cell}
c =

0.5000 1.5000 0.5000 1.5000
d =

{1x11 cell} {1x11 cell}

b and d are cell arrays of dimension the number of simplex iterations. For instance, the
nucleolus computation was completed after solving two linear programming problems.
All the information concerning the first one can be obtained writing:

>> C=b{1}{1}, Aineq=b{1}{2}, bineq=b{1}{3}, Aeq=b{1}{4},
>> beq=b{1}{5}, lb=b{1}{6},ub=b{1}{7}, sol=b{1}{8},
>> exceso=b{1}{9}, saturadas=b{1}{10},
>> convergencia=b{1}{11}

C =
0 0 0 0 1

Aineq =
-1 0 0 0 -1
0 -1 0 0 -1
0 0 -1 0 -1
0 0 0 -1 -1
-1 -1 0 0 -1
-1 0 -1 0 -1
-1 0 0 -1 -1
0 -1 -1 0 -1
0 -1 0 -1 -1
0 0 -1 -1 -1
-1 -1 -1 0 -1
-1 -1 0 -1 -1
-1 0 -1 -1 -1
0 -1 -1 -1 -1

bineq =

0
0
0
0
0
-1
-2

72 Chapter 2. The auxiliary commands

-2
-3
0

-2
-3
-2
-3

Aeq =
1 1 1 1 0

beq =
4

lb =
0 0 0 0 -Inf

ub =

Inf Inf Inf Inf Inf
sol =

0.5000
1.5000
0.5000
1.5000

exceso =
1.4293e-009

saturadas =

6
7
8
9

convergencia =
1

Therefore, in the first step, the NUCLEOLUSINFO function solves the following linear
programming problem:

Min C · x

subject to:

Aineq · x ≤ bineq
Aeq · x = beq
lb ≤ x ≤ ub

where x = (x1, x2, x3, x4, e). The first four components of the solution (the allocation)
are given by sol. The fifth component of the solution (the excess) is stored in exceso. The

2.20 NUCLEOLUSINFO 73

binding constraints are given by saturadas. If the simplex converges then convergencia=1,
otherwise convergencia=0.

See also NUCLEOLUSAUX, NUCLEOLUSIMPLEX, NUCLEOLUS, PRECISION.

74 Chapter 2. The auxiliary commands

2.21 POLIGONORDER
Syntax: [CO,PO]=poligonorder(C,P)

POLIGONORDER Orders the rows of C to draw a polygon.
INPUT

C is a nx2 o nx3 matrix whose rows are points that belong to a same hyperplane. P
must be a 1xn matrix of integer numbers.
OUTPUT

CO=poligonorder(C) CO is obtained by ordering the rows of C so that it is ready to
be used with FILL or PATCH to draw a polygon.

[CO,PO]=poligonorder(C,P) if P is a vector that represents the FACES to where the
rows of C belong, PO reorders the faces.
COMMENTS

By default P=[1:n]. If C has repeated rows, these will be erased and P will be the
default FACES. A warning message will be issued.
EXAMPLE

>> C=[0 1 2/3; -1 3 -1/3;1 0 1; 7 7 -17/3; 2 2 -2/3];
>> P=[5 8 3 2 7];
>> [CO,PO]=poligonorder(C,P)

CO =
-1.0000 3.0000 -0.3333
7.0000 7.0000 -5.6667
2.0000 2.0000 -0.6667
1.0000 0 1.0000

0 1.0000 0.6667
PO =

8 2 7 3 5

See also HYPERPLANE.

2.22 PRECISION 75

2.22 PRECISION
Syntax: redondeo=precision(numero,cifras)

PRECISION Special rounding to a number of accurate decimal places.
INPUT

The original value (numero) and the number of accurate decimal places (cifras). By
default cifras=5.
OUTPUT

The rounded number.
COMMENTS

To control the round off errors when computing the nucleolus we defined a special
rounding function.
EXAMPLE

>> format long
>> numero=pi;
>> cifras=6;
>> redondeo=precision(numero,cifras)

redondeo =
3.14159200000000

See also NUCLEOLUSINFO, NUCLEOLUSIMPLEX, NUCLEOLUSAUX,
NUCLEOLUS.

76 Chapter 2. The auxiliary commands

2.23 REPEATEDROWS
Syntax: [R,T,iguales]=repeatedrows(X,Y)

REPEATEDROWS Erases repeated rows.
INPUT

X and Y must be matrices with the same number of rows.
OUTPUT

R=repeatedrows(X) deletes the repeated rows from matrix X.
[R,T]=repeatedrows(X,Y) deletes the repeated rows of matrix X and the same rows of

matrix Y. Naturally, X and Y must have the same number of rows.
[R,T,iguales]=repeatedrows(X,Y) If matrix X has n rows, iguales is a symmetric ma-

trix of order nxn such that iguales(i,j)=1 if rows i and j of X are equal.
COMMENTS

By default Y=[1:size(X,1)]’.
EXAMPLE

>> X=[1 2 1 3; 2 4 5 6; 1 2 1 3; 4 6 2 3; 2 4 5 6];
>> Y=[2 3 4 5; 1 2 3 4; 3 4 5 4; 5 6 1 3; 2 3 4 5];
>> [R,T,iguales]=repeatedrows(X,Y)
R =

1 2 1 3
2 4 5 6
4 6 2 3

T =
2 3 4 5
1 2 3 4
5 6 1 3

iguales =
1 0 1 0 0
0 1 0 0 1
1 0 1 0 0
0 0 0 1 0
0 1 0 0 1

See also CORESET, CORECOVERSET, WEBERSET.

2.24 WEBER4AUX 77

2.24 WEBER4AUX

Syntax:
[W,Wno,ref,refno,faces,hiperplanos,numpuntos,

numplanos,extremosxplano,MPC]=weber4aux(A)

WEBER4AUX provides the information needed to draw the Weber set of a 4 person TU
game.
INPUT

For 4 players the characteristic function must be introduced with vector A=[v1 v2 v3
v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

W = the extreme points of the Weber set.
Wno = the marginal worth vectors that are not extreme points of the Weber set.
ref = the position of the extreme points in the full list of all marginal worth vectors

following the lexicographic order.
refno = the position of the non-extreme points in the full list of all marginal worth

vectors following the lexicographic order.
faces = matrix of faces ready to be used with the order PATCH. For instance if the first

row is [5 11 13 13] that means that the first face of the weber set is formed by the extreme
points that are in the positions 5, 11, and 13 in W.

hiperplanos = the planes where the faces of the Weber set lie. [a b c d] means
ax+by+cz=d.

numpuntos = number of different extreme points.
numplanos = number of faces of the Weber set.
extremosxplano = matrix of size (numpuntos)X(numplanos) such that aij = 1 if point

i belongs to plane j or aij = 0 if point i does not belong to plane j.
MPC = maximum number of points in any face.

COMMENTS
The Weber set is the convex hull of the marginal worth vectors. Naturally, some

marginal worth vectors may not be extreme points of the Weber set.
EXAMPLE

>> A=[0, 0, 0, 0, 0, 1, 2, 2, 3, 0, 2, 3, 2, 3, 4];

>> [a,b,c,d,e,f,g,h,i,j]=weber4aux(A)

a =
0 0 2 2
0 0 1 3
0 2 0 2
1 0 2 1

78 Chapter 2. The auxiliary commands

1 0 0 3
2 2 0 0
1 3 0 0
2 1 1 0
0 3 1 0

b =
0 1 1 2
0 2 1 1
1 1 0 2
1 2 0 1

c =
1 2 5 6 7 10 11 12 13

d =
3 4 8 9

e =
5 11 13 13
5 7 10 11
1 2 5 13
2 5 7 7
6 7 12 12
6 12 13 13
1 6 13 13
1 2 7 6

10 11 13 12
7 10 12 12

f =
1.0000 -1.0000 1.0000 -2.0000

0 0 1.0000 0
1.0000 0 0 0
1.0000 0.5000 1.0000 1.0000
1.0000 -1.0000 0 1.0000
1.0000 1.0000 2.0000 5.0000

0 1.0000 3.0000 6.0000
0 1.0000 0 0

1.0000 1.0000 1.0000 4.0000
1.0000 -0.5000 -0.5000 1.0000

g =
9

h =
10

i =
0 0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0 0

2.24 WEBER4AUX 79

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 1 0 1 1 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 1 1
1 0 1 0 0 1 1 0 1 0

j =
4

See also WEBERSET, WEBERVERTICES, WEBERINFO,
WEBERINFOEXTRA, WEBERVERTICESEXTRA.

80 Chapter 2. The auxiliary commands

2.25 WEBERINFO

Syntax:
[Wextremes,faces,hiperplanos,numpuntos,numplanos,

extremosxplano,MPC]=weberinfo(A)

WEBERINFO provides the information needed to draw the Weber set of a TU game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

Wextremes = the extreme points of the Weber set.
faces = ordered extreme points ready to be use with FILL. Matrix of faces ready to

be used with the order PATCH (For 4 players). For instance if the first row is [1 2] that
means that the first face of the weber set is formed by the extreme points that are in the
positions 1 and 2 in Wextremes.

hiperplanos = the planes where the faces of the Weber set lie. [a b c] means ax+by=c
and [a b c d] means ax+by+cz=d.

numpuntos = number of different extreme points.
numplanos = number of faces of the Weber set.
extremosxplano = matrix of size (numpuntos)X(numplanos) such that aij = 1 if point

i belongs to plane j or aij = 0 if point i does not belong to plane j.
MPC = maximum number of points in any face.

COMMENTS
The Weber set is the convex hull of the marginal worth vectors. Naturally, some

marginal worth vectors may not be extreme points of the Weber set.
EXAMPLE

A=[0, 0, 0, 10, 4, 4, 10];

>> [a,b,c,d,e,f,g]=weberinfo(A)

a =
6 0 4
10 0 0
0 10 0
0 6 4

b =
1 2
2 3
3 4

2.25 WEBERINFO 81

4 1
c =

0 1 0
1 1 10
1 0 0
1 1 6

d =
4

e =
4

f =
1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

g =
2

See also WEBERSET, WEBERVERTICES, WEBER4AUX,
WEBERINFOEXTRA, WEBERVERTICESEXTRA.

82 Chapter 2. The auxiliary commands

2.26 WEBERINFOEXTRA

Syntax:
[Wextremes,faces,hiperplanos,numpuntos,numplanos,

extremosxplano,MPC,Pfaces]=weberinfoExtra(A)

WEBERINFOEXTRA provides the information needed to draw the Weber set of a TU
game.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

Wextremes = the extreme points of the Weber set.
faces = ordered extreme points ready to be use with FILL. Matrix of faces ready to

be used with the order PATCH (For 4 players). For instance if the first row is [1 2] that
means that the first face of the weber set is formed by the extreme points that are in the
positions 1 and 2 in Wextremes.

hiperplanos = the planes where the faces of the Weber set lie. [a b c] means ax+by=c
and [a b c d] means ax+by+cz=d.

numpuntos = number of different extreme points.
numplanos = number of faces of the Weber set.
extremosxplano = matrix of size (numpuntos)X(numplanos) such that aij = 1 if point

i belongs to plane j or aij = 0 if point i does not belong to plane j.
MPC = maximum number of points in any face.
Pfaces = is a cell array that gives the marginal worth vectors that belong to each face

of the Weber set. Pfaces is obtained from faces substituting the references of the extreme
points by the permutations that defined them.
COMMENTS

The Weber set is the convex hull of the marginal worth vectors. Naturally, some
marginal worth vectors may not be extreme points of the Weber set.
EXAMPLE

>> A=[0, 0, 0, 0, 0, 1, 2, 2, 3, 0, 2, 3, 2, 3, 4];
>>[a,b,c,d,e,f,g,h]=weberinfoextra(A)
a =

0 0 2 2
0 0 1 3
0 2 0 2
1 0 2 1
1 0 0 3
2 2 0 0

2.26 WEBERINFOEXTRA 83

1 3 0 0
2 1 1 0
0 3 1 0

b =
5 11 13 13
5 7 10 11
1 2 5 13
2 5 7 7
6 7 12 12
6 12 13 13
1 6 13 13
1 2 7 6
10 11 13 12
7 10 12 12

c =
1.0000 -1.0000 1.0000 -2.0000

0 0 1.0000 0
1.0000 0 0 0
1.0000 0.5000 1.0000 1.0000
1.0000 -1.0000 0 1.0000
1.0000 1.0000 2.0000 5.0000

0 1.0000 3.0000 6.0000
0 1.0000 0 0

1.0000 1.0000 1.0000 4.0000
1.0000 -0.5000 -0.5000 1.0000

d =
9

e =
10

f =
0 0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 1 0 1 1 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 1 1
1 0 1 0 0 1 1 0 1 0

g =
4

h =
{1x2 cell} {1x3 cell} {1x1 cell} {1x1 cell}

84 Chapter 2. The auxiliary commands

{1x2 cell} {1x1 cell} {1x3 cell} {1x3 cell}
{1x3 cell} {1x3 cell} {1x2 cell} {1x1 cell}
{1x3 cell} {1x2 cell} {1x1 cell} {1x1 cell}
{1x1 cell} {1x1 cell} {1x1 cell} {1x1 cell}
{1x1 cell} {1x1 cell} {1x1 cell} {1x1 cell}
{1x3 cell} {1x1 cell} {1x1 cell} {1x1 cell}
{1x3 cell} {1x3 cell} {1x1 cell} {1x1 cell}
{1x3 cell} {1x3 cell} {1x1 cell} {1x1 cell}
{1x1 cell} {1x3 cell} {1x1 cell} {1x1 cell}

Now, if you want to see the information contained in the first row of the cell array h,
just write

>> h{1,:}

ans =

’1432’ ’3214’
ans =

’3421’ ’4231’ ’4321’
ans =

’4213’
ans =

’4213’

which means that there is one face of the weber set formed by the marginal worth
vectors 1432, 3241 and 4213. Besides, the marginal worth vectors 1432 and 3214 coincide
and the marginal worth vectors 3241, 4231 and 4321 are the same.

See also WEBERSET, WEBERVERTICES, WEBER4AUX, WEBERINFO,
WEBERVERTICESEXTRA.

2.27 WEBERVERTICESEXTRA 85

2.27 WEBERVERTICESEXTRA

Syntax:
[Wextremes,Wnoextremes,contribuciones,repes,repetidos,

Wpoints,Pextremes,PTextremes]=weberverticesExtra(A)

WEBERVERTICESEXTRA Provides the permutations that define the marginal vectors
which are extreme points of the Weber set.
INPUT

For 3 players the characteristic function must be introduced with vector A=[v1 v2 v3
v12 v13 v23 v123]. For 4 players the characteristic function must be introduced with
vector A=[v1 v2 v3 v4 v12 v13 v14 v23 v24 v34 v123 v124 v134 v234 v1234].
OUTPUT

Wextremes = is a matrix whose rows are the marginal contribution vectors that are
extreme points of the Weber set.

Wnoextremes = are those marginal contribution vectors that are a convex combination
of others and, therefore, are not vertices of the Weber set.

contribuciones = All the marginal worth vectors ordered according to the lexico-
graphic order of the players permutations. Some vectors can be repeated.

repes = is a symmetric matrix of order nxn such that repes(i,j)=1 if worth vectors i and
j are equal.

repetidos = is a cell array 1xp, where p is the number of different marginal vectors,
such that repetidos{j} contains the permutations that give rise to the jth worth vector.

Wpoints = The marginal vectors without repetitions.
Pextremes = The permutations that give rise to the extreme points of the Weber set. It

is a 1xp cell array.
PTextremes = The permutations, along with those that produced the same worth vec-

tors, that give rise to the extreme points of the Weber set.
COMMENTS

The Weber set is the convex hull of the marginal worth vectors. Naturally, some
marginal worth vectors may not be extreme points of the Weber set.
EXAMPLE

>> A=[0, 0, 0, 0, 0, 1, 2, 2, 3, 0, 2, 3, 2, 3, 4];
>> [a b c d e f g h]=weberverticesextra(A)
a =

0 0 2 2
0 0 1 3
0 2 0 2
1 0 2 1
1 0 0 3
2 2 0 0

86 Chapter 2. The auxiliary commands

1 3 0 0
2 1 1 0
0 3 1 0

b =
0 1 1 2
0 2 1 1
1 1 0 2
1 2 0 1

c =
0 0 2 2
0 0 1 3
0 1 1 2
0 2 1 1
0 1 1 2
0 2 0 2
0 0 2 2
0 0 1 3
0 0 2 2
1 0 2 1
0 0 1 3
1 0 0 3
1 1 0 2
1 2 0 1
0 2 0 2
1 2 0 1
2 2 0 0
1 3 0 0
2 1 1 0
2 2 0 0
0 3 1 0
1 3 0 0
2 2 0 0
1 3 0 0

d =
Columns 1 through 12
1 0 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0
0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0

2.27 WEBERVERTICESEXTRA 87

1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Columns 13 through 24

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 1

88 Chapter 2. The auxiliary commands

e =
Columns 1 through 5

{1x3 cell} {1x3 cell} {1x2 cell} {1x1 cell} {1x2 cell}

Columns 6 through 10

{1x1 cell} {1x1 cell} {1x1 cell} {1x2 cell} {1x3 cell}

Columns 11 through 13

{1x3 cell} {1x1 cell} {1x1 cell}

f =
0 0 2
0 0 1
0 1 1
0 2 1
0 2 0
1 0 2
1 0 0
1 1 0
1 2 0
2 2 0
1 3 0
2 1 1
0 3 1

g =
Columns 1 through 7

’1234’ ’1243’ ’1432’ ’2341’ ’2431’ ’3412’ ’3421’

Columns 8 through 9

’4123’ ’4213’

h =
Columns 1 through 5

{1x3 cell} {1x3 cell} {1x2 cell} {1x1 cell} {1x1 cell}

2.27 WEBERVERTICESEXTRA 89

Columns 6 through 9

{1x3 cell} {1x3 cell} {1x1 cell} {1x1 cell}

See also WEBERSET, WEBERVERTICES, WEBER4AUX, WEBERINFO,
WEBERINFOEXTRA.

Bibliography

Curiel, I., 1997. Cooperative game theory and applications. Kluwer Academic Publishers,
Dordrecht. The Netherlands.

Derks, J., Kuipers, J., 2002. On the number of extreme points of the core of a transfer-
able utility game. In: Borm, P., Peters, H. (Eds.), Chapters in Game Theory. Kluwer
Academic Publishers, Dordrecht. The Netherlands, pp. 83–97.

Driessen, T., 1988. Cooperative games, solutions and applications. Kluwer Academic
Publishers, Wiley.

González-Dı́az, J., Sánchez-Rodrı́guez, E., 2003. From set-valued solutions to single-
valued solutions: the centroid and the core-center. Working Paper 03-09. Reports in
Statistics and Operations Research, Universidad de Santiago de Compostela.

Ichiishi, T., 1981. Supermodularity: applications to convex games and to the greedy algo-
rithm for LP. Journal of Economic Theory 25, 283–286.

Mathworks, 2005. http://www.mathworks.com.

Owen, G., 1995. Game Theory. Academic Press, San Diego.

Rafels i Pallarola, C., Izquierdo i Aznar, J. M., Marı́n Solano, J., Martı́nez de Albéniz
Salas, F. J., Núñez Oliva, M., Ybern Carballo, N., 1999. Jocs cooperatius i aplicacions
econònomiques. Edicions de la Universitat de Barcelona, Barcelona.

Shapley, L., 1971. Cores of convex games. International Journal of Game Theory 1 (3),
11–26.

Vasil´ev, V., van der Laan, G., 2002. The Harsanyi set for cooperative TU-games. Siberian
Advances in Mathematics 12, 97–125.

Weber, R. J., 1988. Probabilistic values for games. In: Roth, A. E. (Ed.), The Shapley
value. Essays in honor of L. S. Shapley. Cambridge University Press, Cambridge, pp.
101–119.

	Contents
	Introduction
	The main commands
	ADDITIVEGAME
	ADMISSIBLEGAME
	BALANCEDGAME
	BELONGTOCORE
	CONVEXGAME
	CORECENTER
	CORECOVERSET
	CORECOVERVERTICES
	CORESET
	COREVERTICES
	DUALGAME
	ESSENTIALGAME
	EXACTGAME
	EXCESSES
	FACESGAMES
	HARSANYIDIVIDENDS
	HARSANYISET
	IMPUTATIONSET
	IMPUTATIONVERTICES
	MLEXTENSION
	MONOTONICGAME
	NORMALIZEDGAME
	NUCLEOLUS
	SHAPLEY
	SUPERADDITIVEGAME
	TAUVALUE
	TOTALBALANCEDGAME
	UTOPIAPAYOFFS
	WEBERSET
	WEBERVERTICES
	ZEROMONOTONICGAME

	The auxiliary commands
	CCIMPUTATION3
	CENTROIDGAME3
	CHECKBOUNDS
	CHECKSEGMENT
	CONVEXHULLEXTREMES
	CORECOVERINFO
	COREINFO
	EFFICIENCY
	FACETSORDER
	GRAMSCHMIDT
	HARSANYISETINFO
	HERONFORMULA
	HYPERPLANE
	IMPUTATION3PLOT
	IMPUTATIONSET3WHITE
	LINPROG
	LIPSOL
	NUCLEOLUSAUX
	NUCLEOLUSIMPLEX
	NUCLEOLUSINFO
	POLIGONORDER
	PRECISION
	REPEATEDROWS
	WEBER4AUX
	WEBERINFO
	WEBERINFOEXTRA
	WEBERVERTICESEXTRA

	Bibliography

